Orbital Simulations for Directed Energy Deflection of Near-Earth Asteroids
نویسندگان
چکیده
Directed energy laser ablation at the surface of an asteroid or comet produces an ejection plume that will impart a thrust on the asteroid. This thrust can mitigate a threatened collision with the Earth. This technique uses the asteroid itself as the deflection propellant. The DESTAR laser system is designed to produce a sufficiently intense spot on the surface of an asteroid to accomplish this in one of two operational modes. One is a complete "stand-off" mode where a large space based phased-array laser directed energy system can interdict asteroids at large distances allowing sufficient time to mitigate nearly all known threats. A much smaller version of the same system, called DE-STARLITE, can be used in a "stand-on" mode by taking a much smaller laser to the asteroid and slowly deflecting it over a sufficiently long period of time. Here we present orbital simulations for a range of near-Earth asteroid impact scenarios for both the standoff and stand-on systems. Simulated orbital parameters include asteroid radius and composition, initial engagement time, total laser-on time and total energy delivered to target. The orbital simulations indicate that, for exposures that are less than an orbital time, the thrust required to divert an asteroid is generally inversely proportional to laser-on time, proportional to target mass and proportional to the desired miss distance. We present a detailed stand-on scenario, consistent with current dedicated mission capabilities, to show the potential for laser ablation to allow significant deflection of targets with small systems. As one example we analyze a DE-STARLITE mission scenario that is in the same mass and launch envelope as the proposed Asteroid Redirect Mission (ARM) but using a multi kilowatt class laser array capable of deflecting a 325 m diameter asteroid with 2N of thrust for 15 years in a small fraction of even the smallest SLS block 1 launch vehicle configuration. © 2015 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of the Hypervelocity Impact Society.
منابع مشابه
Orbital simulations on the deflection of Near Earth Objects by directed energy
Laser ablation of a Near Earth Object (NEO) on a collision course with Earth produces a cloud of ejecta which exerts a thrust on the NEO, deflecting it from its original trajectory. The DE-STAR system provides thrust by illuminating an Earth-targeting asteroid or comet from afar with a stand-off system consisting of a large phased-array laser in Earth orbit. A much smaller version of the same s...
متن کاملOrbital Simulations on Deflecting Near-Earth Objects by Directed Energy
Laser ablation of a near-Earth object (NEO) on a collision course with Earth produces a cloud of ejecta that exerts a thrust on the NEO, deflecting it from its original trajectory. Ablation may be performed from afar by illuminating an Earth-targeting asteroid or comet with a stand-off “DE-STAR” system consisting of a large phased-array laser in Earth orbit. Alternatively, a much smaller stand...
متن کاملForming Binary Near-Earth Asteroids From Tidal Disruptions
Title of Dissertation: Forming Binary Near-Earth Asteroids From Tidal Disruptions Kevin J. Walsh, Doctor of Philosophy, 2006 Dissertation directed by: Professor Derek C. Richardson Department of Astronomy We present simulations and observations as part of a model of the binary near-Earth asteroid population. The study of binary asteroid formation includes a series of simulations of near-Earth a...
متن کاملOptimal Trajectory Design for Interception and Deflection of near Earth Objects
Many asteroids and comets orbit the inner solar system; among them Near Earth Objects (NEOs) are those celestial bodies for which the orbit lies close, and sometimes crosses, the Earth’s orbit. Over the last decades the impact hazard they pose to the Earth has generated heated discussions on the required measures to react to such a scenario. The aim of the research presented in this dissertatio...
متن کاملAsymmetric impacts of near-Earth asteroids on the Moon
Context. Recent lunar crater studies have revealed an asymmetric distribution of rayed craters on the lunar surface. The asymmetry is related to the synchronous rotation of the Moon: there is a higher density of rayed craters on the leading hemisphere compared with the trailing hemisphere. Rayed craters represent generally the youngest impacts. Aims. The purpose of this paper is to test the hyp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015